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Abstract
In the Genetic Algorithm (GA) literature, many models focus on problems where each
individual’s fitness is independent of others (or implicitly defined by others). In this
paper, a framework is introduced for studying mate selection in the context of GA.
The objective is to model interdependent fitnesses of population individuals by allow-
ing them to search for mates. The resulting GA thus forms a more complex system
in which each individual’s fitness depends on both the environment and other pop-
ulation members. The methods for investigation consist of the Schema Theorem, a
Markov chain analysis, along with several empirical results. I will show that mate se-
lection plays a crucial role in GA’s search power. In particular, individuals with more
distinct characteristics collectively facilitate the search for a single, better solution. The
results presented on the effects of mate selection are a first step toward a deeper un-
derstanding of how GAs work, and thus how to design more robust GAs.

Keywords
Genetic algorithms, mate selection, Schema Theorem, hitchhiking, founder effect,
Markov chain analysis, similar mating, dissimilar mating.

1 Introduction

1.1 Motivation

A Simple GA (Mitchell, 1996) traditionally generates a random, initial population of
candidate solutions (chromosomes). Selection for reproduction, crossover and muta-
tion operate on the population over a certain number of generations until a stop crite-
rion is reached. The probability of individuals being selected for reproduction is based
on their fitness values: better solutions have larger probability to be chosen to cross
with other solutions and generate offspring that share the genetic material from both
parents. Mutations may occur with very low probability. If there is no specific restric-
tion on how mating partners should be chosen, an individual mates with any other
regardless of its parenthood or likeness. This type of mating scheme is referred to as
random mating (Roughgarden, 1979; Russel, 1998).

Random mating is the simplest form of mating process used by GAs. The selection
scheme acts on the population to pick two parents for producing offspring, each par-
ent being passively assigned its mating partner. Such a simple implementation in fact
overlooks a potential advantage in the GA’s mating process—the design of robust GAs
is contingent not only upon how they exchange information (the task of crossover),
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but also upon their selection of proper mates (the task of mate selection). It may be
quite beneficial to seek a mate by active search, rather than by happenstance; once a
good mate is found, the information exchange and combination may be facilitated to
improve performance substantially. Consider the following example:

Suppose the population is composed of bit-strings of length 8 and the relevant
building blocks are 1111**** and ****1111 (* can be either 1 or 0), each of them con-
tributing fitness of 4 to the strings in the population. Then, for example, a string X ,
11110000, is of fitness 4, and the optimal string is 11111111, whose fitness is 8. If we are
given string X and two candidate mating partners, Y1 (11110000) and Y2 (00001111),
under the mechanism of a simple GA (Mitchell, 1996), Y1 and Y2 have the same proba-
bility to be chosen for mating since these two strings are of the same fitness. However,
if we are concerned with finding the optimal string, clearly, string Y2 is better than Y1

because the mating between Y2 and X is likely to generate the optimum, but it is not
the case if X mates with Y1. This implies that the simple selection scheme is not able to
distinguish individuals of the same fitness, yet of quite different string structures.

The example above shows a potential deficiency of employing a simple selection
scheme that does not permit individuals to actively determine their mates. Such an im-
plementation of the selection process confers the only selection pressure in simple GAs,
where population members’ fitnesses are independent of others in the sense that their
fitnesses are explicitly determined by the environment, rather than by other individ-
uals (or implicitly determined by others). In this paper, I introduce another source of
selection pressure by allowing individuals themselves to actively choose mates. The
fitnesses of candidate mates are then somewhat “re-defined” according to the degree
of their satisfying mating preference of a given individual. As a result, the fitnesses of
population members can be explicitly interdependent and coevolve with each other.

Before delving fully into this paper, it is important to discuss biological back-
ground of non-random mating, and provide a literature review of prior GA research
work on this subject.

1.2 Biological Background

One of the reasons population genetics is a successful theory is that it is built upon a
null model, the Hardy-Weinberg equilibrium principle (Freeman and Herron, 1998, p.
121). This null model predicts, under certain assumptions (i.e., population experiencing
no selection, no mutation, no migration, no genetic drift and random mating), that
across generations allele and genotype frequencies will not change. The Population
will not evolve. Violations of these simple assumptions of the null model can result
in change of allele frequencies. Population genetics thus identifies the mechanism of
population evolution.

The assumption of the Hardy-Weinberg Law that members of opposite sexes in
populations mate randomly ensures that the population equilibrium is not disturbed.
This case is referred to as panmixia in which each individual member of a population
has an equal chance of mating with every other individual of the opposite sex. The
probability of mating is not determined by genotype; each individual mates without
preference. However, any degree of preferential matings between individuals that re-
sults in particular genotypes mating more frequently than would be expected at ran-
dom constitutes non-random mating. When non-random mating occurs, genotypes
will not occur in frequencies predicted by the Hardy-Weinberg equilibrium principle.

Sexual selection is typical of non-random mating, where members of one sex show
a consistent preference for a particular phenotype of the opposite sex (Price, 1996; Free-
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man and Herron, 1998). It normally results in strongly skewed mating systems, because
panmixis is lost and often a small number of individuals are responsible for much of
the reproduction in a population.

Another representative non-random mating mechanism is assortative mating
(Price, 1996; Freeman and Herron, 1998). Assortative mating means mating within
subgroups of a population characterized by genetic similarities between mates. For ex-
ample, organisms with similar genetically controlled heat requirements tend to become
sexually active at the same time and mate with each other more frequently than with
individuals with different heat requirements.

Assortative mating can be generally classified as four types: positive assortative mat-
ing, negative assortative mating, inbreeding, and outbreeding. Positive assortative mating
indicates that individuals preferentially mate with their own phenotype so as to de-
crease heterozygotic frequency (increases homozygotic frequency). This is common in
humans; for example, tall men and tall women tend to marry. Negative assortative
mating, on the contrary, means that individuals avoid their own phenotype and the
heterozygotic frequency is increased. For example, if tall persons select short persons
to marry this would represent negative assortative mating.

The third type is inbreeding or, more commonly, incest (Roughgarden, 1979; Rus-
sel, 1998): close relatives have an increased probability of mating with each other, and
unrelated individuals have a decreased probability of mating. Outbreeding refers to
less mating between relatives than occurs in random mating. Inbreeding increases the
proportion of homozygous individuals in a population at the expense of heterozygotes,
thereby resulting in decrease of the genetic diversity in the population. Outbreeding, on
the other hand, increases that same diversity (Roughgarden, 1979). In case of inbreed-
ing, genetic disorders oftentimes increase in frequency with increase in homozygous
recessives. Inbreeding depression is the reduction in mean fitness of a population from
inbreeding resulting in homozygotes with deleterious or lethal recessive alleles. This is
a significant problem in zoos and captive breeding programs, as well as for endangered
species such as the California condor.

1.3 Non-Random Mating in Prior GA Research

Biological background of non-random mating (restricted mating) provides significant
insights for deeper understanding of the role of sex in evolution. In prior GA research,
several non-random mating models are proposed, mainly aiming at (1) promoting pop-
ulation diversity, (2) preventing the formation of lethal solutions, and (3) inducing spe-
ciation.

Promoting population diversity for improving GA’s performance of locating a sin-
gle desired solution (e.g., the global optimum or the best-so-far individual in the popu-
lation) is a common practice. Booker (1987) proposed crossover among reduced surro-
gates. If the population individuals differ in more than one bit, crossover is guaranteed
to generate offspring that are different from their parents. His idea is to restrict mat-
ing between individuals that are too similar so as to prevent fixation within classes. In
(Eshelman and Schaffer, 1991) incest prevention is another non-random mating scheme,
where mating is allowed only between dissimilar individuals. If strings’ Hamming dis-
tances exceed a certain threshold, they are permitted to mate. (Craighurst and Martin,
1995) also proposed a method for incest prevention in which recombination between
individuals with a certain degree of shared parenthood is not permitted. The authors
defined an incest prevention degree, which designates how far back in the family tree
the GA must look in order to prevent recombination between two related individuals.

Evolutionary Computation Volume x, Number x 3



C.-F. Huang

Fernandes, Tavares, Munteanu, and Rosa (2001) proposed the negative assortative mating
GA that chooses one parent (the first parent) and a set A of individuals by regular selec-
tion schemes (e.g., fitness proportionate selection). Then the second parent will be the
one, belonging to set A, that has the maximum Hamming distance to the first parent. If
several second parents are of the same Hamming distance, the one with higher fitness
is selected. The GAs with these “dissimilarity-based” mate selection schemes demon-
strated improved performance when the goal is to locate a single desired solution.

Lethal solutions are the low-fitness offspring that may be generated from crosses
between multiple conflicting solutions. For example, consider a function with two
equal peaks: f(x) = (x − ( 1

2 ))2, where 0 and 1 are the two optima. In many encod-
ings, 00. . .0 and 11. . .1 may represent these two optima. The crossing from solutions at
these two optima is rather likely to create useless hybrids that degrade online perfor-
mance of GA. Resolving this problem usually involves a certain degree of restriction on
mating, because the formation of lethal solutions can be avoided. Deb and Goldberg
(1989) restricted mating by allowing an individual to search for a mate within a dis-
tance of σmating . If such an individual can be found, mating is performed. Otherwise,
a random individual is chosen. They showed that restricting mating to similar indi-
viduals produces more consistent results across multiple runs, and improves average
population fitness.

The third objective related to non-random mating is speciation—formation of re-
productively isolated groups of organisms. In GA research, speciation mechanisms
were conceived of mainly based on two classes of speciation, namely, allopatric spe-
ciation (Mayr, 1942) and sympatric speciation (Dobzhansky, 1937). Allopatric specia-
tion imposes direct or indirect mate restriction on mating through geographic barriers.
Canonical examples of direct restricting mating via geographic barriers are fine-grained
parallel GAs (PGAs), where each individual is allocated at each deme and crossovers
occur only between individuals that are near one another geographically. This is a form
of local mating.

As opposed to the local mating algorithms, coarse-grained PGAs indirectly restrict
mating in which the population is explicitly divided into smaller subpopulations. Each
subpopulation is isolated from the others in the sense that it evolves independently
with occasional migrations of individuals from one subpopulation to another. The re-
sulting mating can only take place within geographically separate groups, except the
migrating individuals. (See (Cantú-Paz, 1997) for a nice review regarding the existing
PGA models.)

Sympatric speciation, on the other hand, restricts mating by explicit rules, rather
than by geographic barriers. For example, Booker (1982, 1985) restricted matings to oc-
cur between functionally similar individuals. The individuals were rules in a Holland-
style classifier system. Only classifiers that match (or partially match) the same mes-
sage are allowed to cross. Along with a sharing scheme in selection, this approach was
shown to work well for forming sub-populations in the context of classifier systems.

Booker (1982) and Goldberg (1989) explored various approaches in which a mat-
ing tag is attached to each individual. This tag must match another individual in some
number of loci before a cross is permitted. Many variations exist, including one-way
matching, two-way matching, and partial matching. More advanced methods add a
template to each individual, and matches must occur between tags and templates in-
stead of between tags and individuals. Tags and templates evolve, along with the rest
of a string. Deb applied evolving species tags and templates to restrict mating in mul-
timodal function optimization (Deb and Goldberg, 1989). Two individuals cross if their
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tags and templates match both ways; if the matching is only one way, they cross with
probability 0.5.

Spears (1994) employed a k-bit tag attached to each population individual, which
effectively divides the population into 2k subpopulations. He then disallowed mating
between individuals with different tags. Tags are never modified by mutation and
crossover, yet selection is allowed to operate across subpopulations. The results he
obtained showed that on two sinusoidal test functions, each having five peaks of equal
height, the algorithm maintains subpopulations on multiple peaks. However, if peaks
are of different heights, all subpopulations eventually converge to the highest peak.

Todd and Miller (1991) used mating-preference tag to induce sexual selection of
individuals and demonstrated that sympatric speciation can be formed in their GA’s
framework. The tag decodes to a real number on a given interval that indicates an in-
dividual’s preferred mating distance. The partial probability that a given individual
mates with another individual is determined by a triangular function. If two individ-
uals’ partial probabilities are calculated, the probability that they actually mate is the
product of their individual, partial probabilities.

With a specific selection-for-reproduction scheme, Todd and Miller showed that,
on a flat fitness function, over the course of the run, the resulting population is dynam-
ically divided into several clusters of phenotypically similar individuals: some subpop-
ulations merge and some split into sub-clusters. However, on non-flat fitness functions,
selection pressure and noise become dominant, and the GA does not generally achieve
speciation.

Mahfoud (1995) proposed a scheme that restricts mating to take place only within a
species; if two individuals are from different species, the crossing is not permitted, and
the individuals proceed to the mutation stage. His implementation used a phenotypic
distance threshold of 0.1 to decide whether two individuals belong to the same species.
It turned out that runs on a sinusoidal testbed that has five peaks, spaced at intervals
of 0.2, without mating restriction, the GA fully converges by generation 40 to a single
global optimum from the five possibilities. (All 100 individuals become identical.) With
mating restriction, due to the reduced number of crosses, the GA fully converges by
generation 30 to a single global optimum. Mating restriction, in this case, accelerates
convergence to a single peak, rather than distributing population on several peaks—
speciation does not occur through this intraspecies mating restriction.

In conclusion, the prior existing work reveals that dissimilarity-based mating re-
striction seemingly facilitates the search for a single, satisfactory solution. Crosses be-
tween species appear to be desirable for potential jumps to higher peaks in the search
space. However, to avoid producing lethal offspring, it would require that matings
occur only between individuals of similar characteristics.

Speciation is a much more complicated issue. If selection pressure dominates the
evolution process, similarity-based mating restriction alone generally does not guaran-
tee effective speciation. The result Mahfoud obtained based on phenotypic similarity is
a clear example. Several aforementioned similarity-based mating restrictions, includ-
ing Spears’ tag-based restriction and Todd and Miller’s sexual selection (on non-flat
fitness functions), are not successful in formation of species, either. To facilitate specia-
tion would require additional strategies to control selection pressure. For instance, Deb
and Goldberg (1989) employed the fitness sharing scheme to regulate fitnesses of pop-
ulation members based on the information available for niches in question. The results
showed that their approach indeed promotes speciation and prevents convergence on
a single peak. When similarity-based mating restriction was applied, the resulting spe-
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ciation becomes more consistent and stable.
We may put together these observations and propose two claims as follows:

Claim A: Dissimilarity-based mating selection accelerates exploration of the search
space.

Claim B: Similarity-based mating selection enhances the capability of speciation mech-
anism for formation and maintenance of subpopulations.

This means that there exists a delicate balance between mating like and unlike
individuals if one aims at not only rapid formation, but also stable maintenance of a
single solution or multiple solutions. Both interspecies and intraspecies crosses may be
beneficial, depending on the problems at hand, the algorithms used, and the objectives.

Given all the results obtained so far in the context of GA, a systematic investigation
on similarity and dissimilarity-based mate selection is still lacking. Todd and Miller
(1997) pointed out that the primary reason was because traditional genetic algorithms
research assumes that sexual recombination per se offers the major advantage of sex-
ual reproduction (Goldberg, 1989). As such, one crucial issue concerning information
exchange within a population of traditional GAs has been overlooked to some degree:
the choice of mating partners can be critical. The goal in this paper is to propose a
framework that allows us to model and investigate interdependent fitnesses of popula-
tion members through their endogenous interactions. I will concentrate on claim A (see
(Huang, 2002a) for some preliminary work on claim B) and show that mate selection
plays a crucial role in GA’s performance advancement.

2 The Schema Analysis and Empirical Results

Traditional GA models focus on problems in which each population member’s fitness
is independent of other population members—their fitnesses are evaluated by a static,
fixed objective function. In nature the fitness of an individual depends in various ways
on dynamic features. Organisms may interact and coevolve with other organisms in
an environment. As a result, the fitnesses of organisms are evaluated not only by the
environment but also by the individuals with whom they interact.

Several authors have studied GA models in which the fitness evaluation of indi-
viduals depends on other individuals in the same population or in other populations.
Some of the results reported show that these models yield better performance than
traditional optimization approaches (Hillis, 1992; Potter et al., 1995; Rosin and Belew,
1997).

In this paper, I introduce simple models that implement mate selection in the con-
text of GA, based on assortative mating in biology. The idea is that, for instance, an
individual may first choose a set of candidate mating partners. Then the probability of
these candidates being selected as the actual mate may depend on the degree of their
satisfying the first individual’s mating preference. This method can be regarded as re-
defining the fitnesses of these candidates, and the probability of being selected is an
increasing function of the newly defined fitnesses. As a result, the realized fitness of an
individual depends on both the environment and how many others would consider it
a good mate.

In the following subsections, the traditional fitness proportionate selection scheme
is employed for two special cases of mating choices to facilitate a theoretical analysis.
Although they represent two opposite extremes, it turns out that such an analysis can
be applied to the investigation for some well known phenomena in biology and in
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the context of GA, such as hitchhiking and the founder effect. These two phenomena
have been identified as important factors that impede the GA’s search power. The
experimental results will show that a dissimilar mating choice effectively suppresses
these two phenomena.

Next, I extend the range of mate selection to include two intermediate cases that
combine similarity test and fitness-proportionate selection to further discriminate can-
didate mates. Therein it will be more clearly seen that the individuals’ probabilities of
being selected for mating are complicated by the environments and mate preferences.
I then study the GA’s performance in terms of “rate of improvement” and “creation
of lethal hybrids.” The results show that dissimilar mating schemes further the GA’s
exploration of the search space and yield a better best-so-far performance, yet at the
expense of generating more lethal hybrids that degrade the population’s fitness.

2.1 Mate Selection Schemes

Many approaches to implement the process of mate selection are possible. For exam-
ple, the first individual may choose a set of members in the population, and then select
the one who most matches its preference. If we adopt the Hamming distance as the
similarity metric, then, in case of similar mating, the first individual may select as the
actual mate the one whose Hamming distance to him is the smallest. In case of dis-
similar mating, the one whose Hamming distance is the largest will be selected. Such
mate selection schemes are deterministic in the sense that the individual who is finally
being selected is the most similar (or dissimilar) to the first individual. It is quite natu-
ral to implement a probabilistic mate selection strategy. An example is to designate the
probabilities of candidates being selected as the actual mate to be proportional to the
magnitude of their Hamming distances.

In this paper, we replace “positive assortative mating” used in biology with “simi-
lar mating.” Likewise, “negative assortative mating” is replaced with “dissimilar mat-
ing.” The similarity measure between two individuals (bit strings) used here is Ham-
ming distance—the number of locations at which corresponding bits differ.

Several mate selection schemes are proposed in this paper. We first examine two
extreme cases: in case of similar mating, the population member that is the most similar
to the first individual is chosen as the mate; in case of dissimilar mating, the most
dissimilar individual is chosen. That is, the selection-for-mating step of a simple GA
(Mitchell, 1996) is modified as:

During each mating event, a fitness-proportionate selection is run to pick out the
first individual. Then the Hamming distances of all population members to the first
individual are calculated. The actual mate of the first individual is chosen according to
the following two different schemes:

Maximum Similar Mating (MSM): The population member whose Hamming dis-
tance is the smallest is selected for mating.

Maximum Dissimilar Mating (MDM): The population member whose Hamming dis-
tance is the largest is selected for mating.

Notice that in the mate selection schemes above if several members are of the same
maximum (or minimum) Hamming distance to the first individual, then one of them is
randomly selected. The computational cost involved in a generation is O(N2) similarity
comparisons, where N is the population size.

These two extreme cases simplify the analysis of mate selection based on the
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Schema Theorem (Holland, 1975). The next subsection presents such a theoretical anal-
ysis.

2.1.1 The Schema Theorem Analysis
The investigation on the increase and decrease of the number of schema instances over
generations makes clear how GAs process sub-solutions to improve the search quality.
Holland’s schema theorem (1975), which describes such a dynamic behavior, is:

E(m(H, t + 1)) ≥ m(H, t) · (f(H, t)/f(t)) · [1− pc(
d(H)
l − 1

)] · [(1− pm)o(H)], (1)

where E(m(H, t)) represents the expected number of instances of schema H present
in the population at generation t; m(H, t) · (f(H, t)/f(t)) is the expected times of H

being selected; 1− pc(
d(H)
l−1 ) is the minimum probability that H survives crossover, and

(1− pm)o(H) is the probability that H survives mutation.
This theorem is often interpreted as implying that short, low-order, above-average

(in fitness) schemata grow exponentially over time, while below-average schemata de-
cay at a similar rate. Therefore, the simple GA, prior to significant convergence, allo-
cates an exponentially increasing number of trials to promising schemata or building
blocks.

In the mechanism of simple GAs (Mitchell, 1996), selection is done with replacement,
meaning that the same individual can be selected more than once to become a mate.
This includes the likelihood of mating with the exactly same copy of oneself. Since
in case of the maximum similar mating an individual chooses the population member
who is the most similar to itself, this would guarantee that the first individual always
chooses its identical copy for mating. Thus the probability that schema H survives
crossover is 1.

Let EMSM (m(H, t)) denote the expected number of instances of H at the tth gen-
eration based on the maximum similar mating. Then the schema theorem becomes:

EMSM (m(H, t + 1)) = m(H, t) · (f(H, t)/f(t)) · (1− pm)o(H).

On the other hand, in case of the maximum dissimilar mating an individual chooses
the population member whose Hamming distance is the largest. This would give the
crossover-surviving probability of schema H a larger likelihood to approach the lower
bound 1 − pc(

d(H)
l−1 ). Since Equation 1 still describes schema H’s dynamic behavior, let

EMDM (m(H, t)) represent the expected number of instances of H at the tth generation
based on the maximum dissimilar mating. Then the corresponding schema theorem is:

EMDM (m(H, t + 1)) ≥ m(H, t) · (f(H, t)/f(t)) · [1− pc(
d(H)
l − 1

)] · [(1− pm)o(H)].

The ratio of the expected growth rate of schema H for these two mate selection schemes
is given by

1 ≤ EMSM (m(H, t + 1))
EMDM (m(H, t + 1))

≤ 1

1− pc
d(H)
l−1

. (2)

Equation 2 thus shows that the expected schema-growth rate for the maximum similar
mating is greater than that for the maximum dissimilar mating.
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Table 1: Small royal road function S1.

s1 = 11111***************; c1 = 10
s2 = *****11111**********; c2 = 10
s3 = **********11111*****; c3 = 10
s4 = ***************11111; c4 = 10

2.2 Empirical Results

The two cases proposed thus far facilitate the theoretical analysis. Although they rep-
resent two opposite extremes, it turns out that such an analysis can be applied to the
investigation for some well known phenomena in the context of GA—hitchhiking and
the founder effect, which have been identified as important factors that affect the GA’s
search power.

2.2.1 Hitchhiking
In population genetics “hitchhiking” is a well-known phenomenon that occurs when
some newly discovered allele (or sets of alleles) offers great fitness advantages. As
that allele spreads quickly through the population, the closely linked alleles (though
they may make no contribution to the fitness) could propagate to the next genera-
tion by hitchhiking on that allele. The rapid occupancy of those non-relevant alleles
thus greatly reduces exploration of alternatives at those loci. They either drown out
other already-discovered alleles that are advantageous, or leave no room for not-yet-
discovered beneficial alleles.

In GA research, hitchhiking has been identified as a major problem that limits im-
plicit parallelism by reducing the sampling frequency of various building blocks (Das
and Whitley, 1991; Forrest and Mitchell, 1993). Forrest and Mitchell found that if some
intermediate stepping stones are much fitter than the primitive components, hitchhik-
ing generates more severe problems that greatly hamper the discovery of some neces-
sary schemata.

To see the hitchhiking phenomenon in the context of GA, let us consider an ex-
ample function—a small “Royal Road (RR)” function (Forrest and Mitchell, 1993), in
which four consecutive building blocks of five ones each are defined. Table 1 is the
schematic of this function.

This function involves a set of schemata S = {s1, . . . , s4} and the fitness of a bit
string x is defined as

F (x) =
∑

s∈S

csσs(x),

where each cs is a value assigned to the schema s as defined in the table; σs(x) is defined
as 1 if x is an instance of s and 0 otherwise. In this function, the fitness of the global
optimum string (20 1’s) is 10 × 4 = 40.

This small Royal Road function is selected as a testbed because it belongs to a
class of building-block-based functions, in which improvements in the RR domain de-
pend entirely on the discovery and exploitation of building blocks. This serves as an
idealized testbed for us to observe (1) how mate selection facilitates distinguishing in-
dividuals that carry necessary building blocks for further improvements, and then (2)
how crossover brings these building blocks residing on separate strings into combina-
tion on a single string. (The second goal has been extensively investigated by Forrest et
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Figure 1: Schema dynamics for observing hitchhiking (Maximum Similar Mating).

al. (1993). This paper focuses on the study of the first goal.)
One can observe hitchhiking directly by plotting the densities (percentage of the

population that are instances) of the relevant schemata over time for the GAs. The
experiments performed are based on one-point crossover rate 1,1 and population size
50 over 200 generations.

To give hitchhiking its easiest test, I turn off the mutation operator, since mutation
may destroy hitchhiker(s). Figure 1 is a typical run that illustrates density dynamics
for the GA based on the maximum similar mating. Schemata s3 and s4 are found in the
first several generations. Then these two schemata compete against each other before
generation 20. Thereafter, schema s4 takes over the population and quickly spreads
though the population. In the mean time, schema s3 was rapidly suppressed by the
hitchhikers adjacent to s4. A closer examination shows that these hitchhikers are 00110.
Since mutation is turned off and mating partners are simply the copies of individuals
that select them, the population is quickly filled with the clones of the individuals that
carry s4 and its hitchhikers, and finally converges to a single genotype.

Next we examine the GA runs based on the maximum dissimilar mating, with the
same random seed. Figure 2 displays the density plots for a typical GA run with zero
mutation rates. The appearances and disappearances of blips are more dramatic than
Figure 1. Unlike Figure 1, s4 has no apparent edge over s3: the densities of the two
schemata never exceed 0.6, leaving enough space for adjacent schemata to reproduce
in the population and stay alive for a longer time.

The difference between the experimental results obtained for these two mating
schemes is a consequence of different schema growth rates. As shown in the preceding
subsection, the schema growth rate for the maximum similar mating is greater than
that for the maximum dissimilar mating. As a result, once a schema is discovered, the
maximum similar mating guarantees that, with a larger likelihood, instances of that
schema take over the entire population in a shorter time than the maximum dissimilar
mating. This often entails non-relevant hitchhiking alleles that impede further explo-
ration of alternatives at the hitchhiking loci. Then the density of one or more of the

1Crossover rate 1 was used in the hope of increasing the improvement rate if two mating partners fit each
other. E.g., if crossover rate is 1, then the mating between 11110000 and 00001111 (see the example in Section
1.1) immediately generates the optimum string (11111111) given that the crossover point is exactly at the
middle of the strings.
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Figure 2: Schema dynamics for observing hitchhiking (Maximum Dissimilar Mating).

disjoint schemata is seen to decline significantly. The greater convergence rate result-
ing from the similar mating scheme therefore can negate progress that the population
has made towards good schemata that overlap the hitchhiking bits.

The most likely positions for hitchhikers are those close to the defined positions
of good schemata, since they are less likely to be separated from those defined posi-
tions under crossover (Forrest and Mitchell, 1993). This implies that the defining bits
of those schemata in the highly fit strings, along with the nearby bits, quickly come
to occupy most of the population. In other words, the nearby bits “hitchhiking” to
prominent schemata partially or totally suppress the appearance of disjoint building
blocks, leaving few variants at those loci. This leads to the loss of diversity in the vicin-
ity of the better schemata. As a consequence, some of the necessary building blocks
for crossover to combine to gain performance advancements are lost or unlikely to be
discovered, and the GA’s search power is greatly hampered.

2.2.2 Founder Effect

In GA research, a much more important constraint on exploration than hitchhiking
is the founder effect (Holland, 2000). In presence of incompatible schemata, the first
discovered of the incompatible schemata comes to occupy a large portion of the popu-
lation, and constrain future evolutionary progress. Consequently, the founder schema
effectively precludes the testing of the other incompatible schema. Further improve-
ments stem from the founder, making it progressively less likely that the other schema
will influence the search process.

The fitness landscape of the simple royal road function used in the preceding sub-
section consists of four consecutive building blocks. The combination of these building
blocks constructs the only path for the GA to improve the search. Consider a variant
of the simple royal road function that consists of incompatible schemata as shown in
Table 2.

This function involves mutually exclusive alleles at each schema, and there are
16 (24) alternatives for search to improve solution quality. The fitness of the global
optimum (20 1’s) is 40, and that of the other local optimum (20 0’s) is 20.

The incompatibility of schemata on this function is designed for testing the
founder effect—I would expect each 5-bit block to be soon occupied by a founder
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Table 2: Incompatible small royal road function IS1.

s1 = 11111***************; c1 =10
s2 = 00000***************; c2 = 5
s3 = *****11111**********; c3 =10
s4 = *****00000**********; c4 = 5
s5 = **********11111*****; c5 =10
s6 = **********00000*****; c6 = 5
s7 = ***************11111; c7 =10
s8 = ***************00000; c8 = 5

schema, unless the founder schema is destroyed by crossover or mutation.
Again one can examine the founder effect directly by plotting the density of each

schema over generations. The experiments performed are based on one-point crossover
rate 1, and population size 50 over 200 generations.

Analogous to the discussion for the hitchhiking problem, mutation is turned off in
order to give the founder effect its clearest examination. Figure 3 is a typical run that
displays the schema density dynamics for the maximum similar mating GA. Schemata
s1 and s4 are discovered at the first generation and quickly spread though the popu-
lation. A closer examination shows that each of s1 and s4 has an instance at the first
generation. Then because maximally similar individuals are always chosen for mating,
which in turns enhances the degree of premature convergence, the instances of s1 and
s4 quickly take over the whole population. Due to the incompatibility, s2 and s3 are
prohibited from being tested. In the mean time, along with the growth of schema s4

hitchhikers 10110 rapidly propagate to the whole population and block the testing of
schema s5 or s6 (adjacent to s4 on the right).

These results demonstrate that for this typical run s1 and s4 are the first discov-
ered of the respective, incompatible schemata which rapidly found their dynasties. As
a consequence, further improvements are constrained by s1 and s4, and the GA can
only devote itself to 4 possible alternatives for search improvements. (Due to sampling
errors, either of each pair of incompatible schemata is likely to dominate the popula-
tion. Therefore, for other runs different schemata may take over the whole population.)

For the maximum dissimilar mating, the density plots for a typical GA run with
mutation being turned off is displayed in Figure 4. Unlike Figure 3, no schema effec-
tively founds a dynasty. As can be seen, the maximum density of each schema is around
0.5, making it less likely that either of incompatible schemata precludes the testing of
other incompatible schema (note that, due to sampling error, s2, s4, and s5 still do not
show up in the population in later generations). Since the maximum dissimilar mating
allows individuals to exchange genetic material with dissimilar mates, they can recruit
more distinct alleles to escape from the founder effect and hitchhiking.

2.2.3 Rate of Improvement and Creation of Lethal Hybrids
How rapid is evolutionary change, and what determines the rates, patterns, and causes
of change, or lack thereof? Answers to these questions can tell us much about the
evolutionary process. The study of evolutionary rate in the GA context usually involves
defining a performance measure that embodies the idea of rate of improvement, so that
its change over time can be monitored for investigation. In this paper, the performance

12 Evolutionary Computation Volume x, Number x



A Study of Mate Selection Schemes in GAs

50 100 150 200
0

0.5

1

Pr
op

or
tio

n 
of

 S
1

50 100 150 200
0

0.5

1

Pr
op

or
tio

n 
of

 S
2

50 100 150 200
0

0.5

1

Pr
op

or
tio

n 
of

 S
3

50 100 150 200
0

0.5

1

Pr
op

or
tio

n 
of

 S
4

50 100 150 200
0

0.5

1
Pr

op
or

tio
n 

of
 S

5

50 100 150 200
0

0.5

1

Pr
op

or
tio

n 
of

 S
6

50 100 150 200
0

0.5

1

Generation

Pr
op

or
tio

n 
of

 S
7

50 100 150 200
0

0.5

1

Generation

Pr
op

or
tio

n 
of

 S
8

Maximum Similar Mating (mutation rate=0)

Figure 3: Schema dynamics for observing the founder effect (Maximum Similar Mat-
ing).
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Figure 4: Schema dynamics for observing the founder effect (Maximum Dissimilar Mat-
ing).

metric employed is quite traditional—“best-so-far” curves that plot the fitness of the
best individual that has been seen thus far by generation n.

Since the two mating schemes discussed so far are two extreme cases where only
the maximally similar or dissimilar population member is chosen as the mate, I in-
troduce another two intermediate mate selection schemes before studying the rate of
improvement. That is, during each mating event, the first individual is still picked
by fitness-proportionate selection, and the Hamming distances of all population mem-
bers to this individual are calculated. Then the mate for the first individual is chosen
according to the following two schemes:

Proportional Similar Mating (PSM): The probabilities of population members being
selected are inversely proportional to their Hamming distances.

Proportional Dissimilar Mating (PDM): The probabilities of population members be-
ing selected are proportional to their Hamming distances.
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Notice that since individuals’ Hamming distances may be zero, to avoid dividing
by zero in the proportional similar mating I offset all the Hamming distances by 1 in
this paper. (Other offset values are possible, of course.)
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Figure 5: Best-so-far performance on S1.
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Figure 6: Best-so-far performance on IS1.

The experiments conducted here are based on one-point crossover rate 1, mutation
rate 0.005, and population size 50 over 50 runs. Figure 5 and 6 display the averaged
best-so-far curves on S1 and IS1, respectively.2 One can see that dissimilar matings
tend to provide advantage to the GA’s search power, especially the maximum dissimi-
lar mating scheme.

In (Huang, 2002a) it is shown that, by suppressing hitchhiking and the founder ef-
fect, the maximum dissimilar mating retains more genetic variation in the population.
By further exploring the search space the GA thus yields a better best-so-far search
progress, yet at the expense of the mean population fitness. Namely, although the max-
imum dissimilar mating GA is engaged in searching and constructing better best-so-far
solutions, this mate selection would seem to create more lethal hybrids that degrade the
population’s fitness.

2The vertical bars overlaying the metric curves throughout this paper represent the 95-percent confidence
intervals calculated from Student’s t-statistic (Miller, 1986).
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The following example supports this claim. Suppose the population is composed
of bit-strings of length 4 and the relevant building blocks that are able to contribute
are 11** and **11 (the optimal string is thus 1111). Consider lethal offspring that are
easily removed from the population, say individuals of fitness 0. Then, for example,
given a string X , 1100, and two candidate mating partners, Y1 (1100) and Y2 (0011),
the maximum similar mating requires X to select Y1 as the mate. Since X and Y1 are
identical, their mating generates neither the optimum nor lethal hybrids. In case of the
maximum dissimilar mating, however, Y2 will be chosen as the mate and there exists
probability 1

3 for generating the optimum and 2
3 for lethal offspring after crossover.
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Figure 7: Proportions of lethal offspring on S1.
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Figure 8: Proportions of lethal offspring on IS1.

The empirical results in Figure 7 (based on the test function S1) validate the claim
made above, from which one can see the significant proportions (between 0.6 and 0.7)
of lethal offspring generated from the maximum dissimilar mating. This indicates that
for the maximum dissimilar mating 30 to 35 individuals (population size 50) in each
generation are lethal and rapidly disappear from the population. Similar matings, on
the other hand, prevent the creation of lethal offspring. In particular, matings between
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maximally similar individuals preserve the proportions of lethal offspring at the level
lower than 0.1 after a few generations, meaning that on average less than 5 strings are
of fitness value 0 (in fact, these lethal strings are generated from mutation, because
crossover has minimal effects on the maximum similar mating scheme). Figure 8 illus-
trates similar results for the test function IS1.

2.3 Summary

In this section the framework proposed for investigating mate selection allows us to
conduct an analysis to deepen our understanding of GAs. I first started with mat-
ing preference for the maximally similar or dissimilar individuals, and showed that,
in the context of GA, hitchhiking and the founder effect can be explained in terms of
the schema analyses, and these two phenomena can be suppressed by dissimilar mat-
ing choices. The advantage of mating with dissimilar individuals is reflected by the
corresponding GA’s improved best-so-far performance.

Afterwards I introduced more complicated means for calculating individuals’
probabilities of being selected via combining similarity test and fitness-proportionate
selection. Allowing population members to discriminate candidate mates provides an-
other source of selection pressure, in addition to the selection pressure arising from the
environment.

In short, the analyses reveal that individuals with more distinct characteristics (in
terms of the Hamming distance) facilitate the search for a single, better solution. The
problem it may cause is lethal hybrids: matings between dissimilar individuals give
crossover more opportunity to disrupt existing building blocks, leading to decrease
of the mean population fitness. (See (Huang, 2002a) for a more detailed discussion.)
Therefore, to avoid producing lethal offspring may require that matings occur between
individuals of similar characteristics.

In the next section, I present a Markov chain analysis for further study of these
mate selection strategies.

3 Markov Chain Analysis

Since a “state” of simple genetic algorithms can be defined by a particular population,
and the composition of the population at the next step is entirely determined by the
present population, it has been quite natural to model simple GAs as Markov chains.
For example, there are several Markov models that were derived assuming infinite pop-
ulation and involve characterizing steady state behavior (Suzuki, 1993; Rudolph, 1994).
By contrast, the model developed by Nix and Vose (1992) was based on finite popula-
tion size. De Jong, Spears, and Gordon (1994) applied this finite-population model to
investigate GA-based function optimization (GAFO), in which they performed a tran-
sient Markov chain analysis to calculate the mean waiting times. In this section, I intend
to further study these mate selection schemes using a Markov chain model, based on
the Nix and Vose model and the GAFO theory of De Jong et. al. Although such mod-
els quickly become unwieldy with increasing population size or string length, they
provide important insights into how mate selection plays a crucial role in GA’s search
power, and thus serve as guidelines for studying more realistic problems.

In the following subsection, the Nix and Vose Markov model is briefly summa-
rized. Then in Subsection 3.2 I show how the mate selection schemes are incorporated
in this model, and use them for simple visualization analysis. Subsection 3.3 is a brief
summary of the GAFO theory of De Jong et. al., following some computational ex-
plorations for understanding effects of mate selection. The final subsection presents
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Table 3: The Z matrix (n=2 and l=2).

State 00 01 10 11
P1 0 0 0 2
P2 0 0 1 1
P3 0 0 2 0
P4 0 1 0 1
P5 0 1 1 0
P6 0 2 0 0
P7 1 0 0 1
P8 1 0 1 0
P9 1 1 0 0

P10 2 0 0 0

relevant discussions.

3.1 The Nix And Vose Markov Model

Nix and Vose (1992) introduced a Markov chain model that is intended to represent
a simple, finite-population GA based on a standard binary representation, fitness-
proportional selection scheme, standard mutation, and one-point crossover operators.
The only difference between their model and standard GAs (Mitchell, 1996) is that only
one offspring from each crossover survives. As a result, for population size n, a total of
n recombination events take place. (This simplifies parts of the formalization.)

The simple GA model they considered moves from one generation to the next as
follows:

(1) Obtain two parents by proportional selection.
(2) Mutate (mutation implies change) the parents with rate µ.
(3) Produce the (mutated) parents’ child by one-point crossover with rate χ.
(4) Put one child into the next generation.
(5) If the next generation contains less than the population size, go to step 1.
In their model, the search space is the set of all length l strings and r = 2l is the

total number of possible strings. If n is the population size, then the number of possible
populations, N , corresponding to the number of possible states is:

N =
(

n + 2l − 1
2l − 1

)
.

The possible populations are described by the matrix Z, which is an N × r matrix.3 The
ith row φi = 〈zi,0, . . . , zi,r−1〉 of Z is the incidence vector for the ith population. Thus
zi,y is the number of occurrences of string y in the ith population, where y is the integer
representation of the binary string. For example, suppose l = 2 and n = 2; then r = 4, N
= 10 and the Z matrix is shown in Table 3:

With these definitions, Nix and Vose derived the formula for calculating exact state

3For programming convenience I transpose the Z matrix of Nix and Vose (1992), as indicated by De Jong
et al. (1994).

Evolutionary Computation Volume x, Number x 17



C.-F. Huang

transition probabilities Qi,j :

Qi,j = n!
r−1∏
y=0

(M [ Fφi

|Fφi| ]y)zj,y

zj,y!
, (3)

where F is determined from the fitness function, and M depends on the mutation and
crossover operators.

Significant insights into transient behavior can be obtained computationally by
computing and analyzing Qk directly. Unfortunately, the size of the Q matrix for typical
GAFO applications is computationally unmanageable since the number of states N
grows rapidly with string length l and population size n. For example, a GA with
population size 10 and bit-string length 6 has about 6.2× 1011 states.

3.2 Mate Selection In The Nix And Vose Markov Model

The Nix and Vose Markov model consists of two key operators: F and M , where F
relates to selection, and M relates to mutation and crossover. Since the mate selection
schemes only affect the GA’s selection process, altering the operator F is the major
objective in this section.

In the formal model of Vose and Liepins (1991), each string in the search space is
specified by the corresponding integer equivalent between 0 and 2l-1. The population
at generation t is represented by two vectors, ~p(t) and ~s(t), each of length 2l, where ~p(t)
specifies the composition of the population at generation t, and ~s(t) represents strings’
probabilities of being selected. Let F be a two-dimensional matrix such that Fi,j = 0
for i 6= j, and Fi,i = f(i), where f(i) is the fitness of string i. Then under proportional
selection it yields

~s(t) =
F~p(t)

∑2l−1
i=0 Fi,ipi(t)

, (4)

where pi(t) denotes the ith component of ~p(t), which is the proportion of the popula-
tion at generation t consisting of string i. Therefore the ith component of ~s(t) is the
probability that string i will be selected as a parent.

For example, if l=2 and the population consists of two copies of 11 and one copy
of 00 and 01, then

~p(t) = (0, 0.25, 0.25, 0.5).

If the fitness is equal to the number of ones in the string, then

~s(t) = (0, 0.1667, 0.1667, 0.6667).

Given these preliminaries, one can compute the expected proportion of string k at
generation t+1:

E(pk(t + 1)) =
∑

i,j

si(t)sj(t)ri,j(k), (5)

where ri,j(k) is the probability that string k will be produced by a recombination event
between string i and string j, given that i and j are selected to mate.

Then Vose and Liepins derived the operator M to encapsulate the calculations re-
garding crossover and mutation that account for ri,j(k). Finally, Nix and Vose (1993)
followed these results to construct the finite-population model as described in Equa-
tion 3.
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Table 4: Procedure for calculating the second individual’s probability of being selected
in Equation 5 for the maximum similar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:
a. For j from 1 to r, compute the Hamming distance

of string j to string i, if zm,j 6= 0, where zm,j

is the number of occurrences of string j in the
mth population.

b. Fj,j =1, if string j is the only one that possesses
the minimum Hamming distance; or Fj,j = 1

u ,
if u is the number of strings whose Hamming
distances are the minimum.

To understand how the mate selection schemes are integrated with the Nix and
Vose Markov model, let us take a closer look at Equation 5, in which both the indi-
viduals selected for mating—string i and string j—are based on fitness-proportionate
selection. Recall that the maximum similar mating scheme picks up the first individual,
which plays the role of string i in Equation 5, by fitness-proportionate selection. Then
the population member who is the most similar to the first one is chosen as the second
individual, which appears as string j in Equation 5. Hence the way of calculating sj(t)
in Equation 5 is the only part that needs to be reconsidered.

Since the maximally similar individual must be chosen as the second string, it
turns out that the fitness matrix F needs to be re-defined so that only the string that is
maximally similar to the the first string can possess non-zero fitness values. If several
strings are of the same minimum Hamming distance to the first string, these strings are
assigned the same fitness values.

Plugging the new fitness matrix F into Equation 4 yields the new selection prob-
ability sj(t) of string j for Equation 5. The resulting Markov model is exactly the GA
model with the maximum similar mating scheme.

This implementation is summarized in Table 4.
As for the maximum dissimilar mating, the first string will select as its mate the

string whose Hamming distance is the maximum. Thus the implementation of the
maximum dissimilar mating remains the same as that of the maximum similar mating,
except that “minimum” is replaced with “maximum” in Table 4.

We can proceed to derive the Markov model for the proportional similar mating in
the same way. Recall that in the proportional similar mating, the first string is picked
by fitness-proportionate selection, and the probabilities of strings being selected as the
first string’s mate are inversely proportional to their Hamming distances. As discussed
previously, I offset all the Hamming distances by 1. The implementation is shown in
Table 5.

As for the proportional dissimilar mating, since the probabilities of population
members being selected as the mate are proportional to their Hamming distances, the
corresponding implementation can be obtained by replacing “1/(Dj + 1)” in Table 5
with “Dj”.
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Table 5: Procedure for calculating the second individual’s probability of being selected
in Equation 5 for the proportional similar mating.

1. Let Fi,j=0 for all i and j.

2. For i from 1 to r, do:
a. For j from 1 to r, compute the Hamming distance

of string j to string i, if zm,j 6= 0, where zm,j

is the number of occurrences of string j in the
mth population.

b. Fj,j = 1
Dj+1 , where Dj represents the Hamming

distance of string j.

3.2.1 Visualizing Markov Models And Diversity
Having modified the Markov model for the mate selection schemes, we can compute
the state transition probability matrix for each case. Let QMSM , QPSM , QPDM , and
QMDM correspond to the state transition probability matrices for the maximum similar
mating, the proportional similar mating, the proportional dissimilar mating, and the
maximum dissimilar mating, respectively.

Visualizing Qk provides us with the insight regarding the effects that different
mate selection schemes have on the state transition probability matrix Q. (See (De
Jong, Spears, and Gordon, 1994) for additional evidence concerning the usefulness of
this approach.) This can be implemented by plotting Qk as an image, the gray level of
coordinate (i,j) reflecting the probability that the GA will move from state i to state j in
k steps. The density of blackness at each (i,j) indicates the corresponding k-step tran-
sition probability, where the darker a point, the higher the corresponding probability.

As an example, I use a fitness function with f(y) = integer(y)+1 (De Jong, Spears,
and Gordon, 1994), where integer(y) returns the integer equivalent of the bit string
y. The string length is 2, population size is 4 (thus the number of total states is 35),
crossover rate is 1, and mutation rate is 0.01.

Figure 9 shows the results for various Qk
m, where m represents MSM, PSM, PDM

and MDM. Let us first inspect the case for one-step transition, i.e., k =1. A clear, visible
diagonal line from Q1

MSM indicates that significant changes in the population in one
generation are very unlikely. As we scan the images from left to right, we see that this
situation can be altered by gradually allowing matings to take place between relatively
dissimilar individuals, generating more diffuse state transition probability matrices.
The net result is that dissimilarity-based matings can make larger changes more easily.

As time proceeds, we see that the changes in the probability distribution are al-
ready evident in Q10

m and even more evident in Q100
m . The emerging vertical lines corre-

spond to the particular populations at which the steady state distribution will accumu-
late most of its probability mass (i.e., the populations most likely to be observed when
the GA settles into its dynamic equilibrium).

We can use the Markov model to further examine whether or not dissimilarity-
based mate selection schemes will maintain larger population diversity. Recall (from
the preceding subsection) the matrix Z represents possible populations, which is an
N × r matrix. The ith row φi = 〈zi,0, . . . , zi,r−1〉 of Z is the incidence vector for the ith
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Figure 9: Visualization of Qk.

population, and zi,y is the number of occurrences of string y in the ith population.
Let b denote the row vector of strings’ binary representations, in which the ith

component corresponds to string i’s binary representation (i = 0, ..., r − 1). Then bi,j

represents the bit value of string i’s locus j (j = 1, ..., l). For instance, if binary strings
are of length 2, then b = 〈00, 01, 10, 11〉, and b0,1 = 0, b1,2 = 1, b3,1 = 1 and so forth.
To compute the proportion of 1’s at each locus in the ith population, we need to extend
the definition of vector inner product to include products of scalars and bit strings.

For example, φ2 = 〈0, 0, 1, 1〉 represents state P2 of Table 3, and its inner product
with b = 〈00, 01, 10, 11〉 is:

3∑

i=0

z2,i · bi = 0 ∗ (00) + 0 ∗ (01) + 1 ∗ (10) + 1 ∗ (11)

= (10) + (11).

The result above shows that the number of 1’s at the first locus (the right bit of strings)
is 1, and that at the second locus (the left bit of strings) is 2. Dividing the number of 1’s
at each locus by population size 2 yields:

p1 = 0.5 and p2 = 1,

where pj represents the proportion of 1s at locus j.
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Thus the inner product of φi and b, dividing by population size n, represents the
proportion of 1’s at each locus in the ith population.

Let pi,j be the proportion of 1s at locus j in the ith population. To measure diversity
at the jth locus, a simple bitwise diversity metric can be defined as follows (Mahfoud,
1995):

Di,j = 1− 2|0.5− pi,j |. (6)

One can use the average of the bitwise diversity over all loci as a combined allelic
diversity measure for the population. Let DIVi represent the allelic diversity for the ith
population. Then we have the allelic diversity measure for the ith population:

DIVi =

∑l
j=1 Di,j

l
. (7)

DIVi has a value of 1 when the proportion of 1s at each locus is 0.5 and 0 when all of
the loci are fixed to either 0 or 1. Effectively it measures how close the allele frequencies
are to a random population (1 being closest).

Let DIV denote the column vector of populations’ averaged allelic diversity. Then
the expected allelic diversity at generation k is:

E(DIV ) = (iniP ·Qk) ·DIV, (8)

where iniP is a row vector whose ith component represents the probability of the GA
being in state i at generation 0 (the initial generation), and thus iniP · Qk is states’
probability distribution at generation k. In this paper, I consider randomly initialized
GAs. The probability of a GA being in state i at time 0, denoted as P (X0 = i), is (see
(De Jong, Spears, and Gordon, 1994)):

P (X0 = i) =
n!

zi,0! · · · zi,r−1!
(
1
r
)n.

By Equation 8, we can compute the exact average allelic diversity for any cases. For il-
lustrations, I still use the fitness function with f(y) = integer(y)+1. Figure 10 displays
the results for string length 2 and several different population sizes (n = 3, . . . , 8), based
on crossover rate 1 and mutation rate 0.01. The results show that the averaged allelic
diversity of dissimilarity-based mate preferences is larger than that of similarity-based
mate preferences. (This agrees with our intuition that dissimilar mating can generate
more diverse populations than similar mating.) In particular, one can see that the dif-
ference between the dissimilarity and similarity-based mate selection schemes enlarges
as population size increases.

3.3 The GAFO Theory

The preceding section discussed GA’s search power in terms of the best-so-far perfor-
mance. Such a performance metric is a form that a GA practitioner who is interested
in optimization would generally care about. For simple test functions the optimum
is easy to locate and one may use the expected time (generations) to first encounter
the optimum as a metric to compare different GAs’ search power. In this subsection I
use the GAFO framework developed by De Jong et al. (1994) to examine the effects of
mating choices on GA’s performance.
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Figure 10: Averaged allelic diversity.

3.3.1 Expected Waiting Time Analysis
De Jong et al. (1994) extended the Nix and Vose Markov chain analysis to provide an-
swers for the expected waiting time until an event of interest is first observed. The
observation is that the state transition probability matrix Q can be used to compute
“mean first passage times” for going from state i to state j. If one is interested in know-
ing how long the GA would have to run on average before first reaching a set J of
states, given that the process is currently in state i, then the expected waiting time is:

EWT (J) =
∑

i/∈J

P (X0 = i)mi,J ,

where mi,J denotes the mean first passage time from state i to any of the states in set
J , and i is not in J ; mi,J can be computed from the system of simultaneous equations

mi,J =
∑

j∈J

Qi,j +
∑

k/∈J

Qi,k(1 + mk,J).

If one defines J to be the set of states containing at least one copy of the optimum
string, then EWT (J) is the expected number of generations until the optimum is first
encountered.

Given the summary of De Jong et. al.’s work, I present some preliminary results to
study effects of various factors on the EWT analysis. Characterizing these effects pro-
vides useful insights and make predictions about how to improve GA’s performance in
the context of function optimization.

3.3.2 Interacting Effects of Mate Selection and Mutation
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Figure 11: Interacting effects of mate selection and mutation.

As an example, I again use the test function f(y) = integer(y) + 1. Due to the compu-
tational limitation of the Nix and Vose model, I use the simplest possible case, string
length 2, to proceed the investigation. The optimum string is 11. The population size n
used is 5 and crossover rate is 1. For this case the first goal is to investigate the interact-
ing effects of mate selection and mutation on the GA’s EWTs to the optimum.

Figure 11 displays the results obtained for the GAs with MSM, PSM, PDM and
MDM, based on mutation rates ranging from 0.01 to 0.2. The top plot is the exact EWTs
and the bottom plot corresponds to the ratios of the EWTs for the MSM, PSM, and PDM
GAs to that for the MDM GA.

One can see that the maximum dissimilar mating (MDM) generally has the lower
expected waiting times than the other three. Note how dissimilar matings become
increasingly important as mutation rate decreases (the larger the ratios, the better the
relative performance of the maximum dissimilar mating). This shows that, as mutation
rate decreases, dissimilar mating would become a dominant factor that brings forth
population diversity for further exploration of the search space.

3.3.3 Interacting Effects of Mate Selection and Crossover

One can also use these models to analyze the interacting effects of mate selection and
crossover on EWTs. Figure 12 shows the results obtained for the four mate selection
schemes, based on crossover rates ranging from 0.05 to 1, mutation rate .1, and popu-
lation size 5. The top plot is for the exact EWTs and the bottom plot displays the ratios
of the EWTs for the MSM, PSM, and PDM GAs to that for the MDM GA.

One can see that the maximum dissimilar mating generally has the least expected
waiting times than the other three. In particular, the dissimilar mating schemes demon-
strate increasingly improved performance as crossover rate increases. This shows that
both proper mate selection and crossover must operate together to enhance the power
of information exchange in GA’s population.

3.3.4 Effects of Scaling
One can investigate how difficulties of test functions affect the GA’s performance. It is
well-known that proportional selection is sensitive to simple linear scaling of the fitness
function (De Jong, Spears, and Gordon, 1994). For example, given the test function f
and its variant, g = f +100, one would expect that the GA is more incapable of locating
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Figure 12: Interacting effects of mate selection and crossover.
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Figure 13: Effects of Scaling.

the optimum of g, since the fitness of function g’s optimum is relatively close to other
fitness values.

Since MDM and PDM tend to choose dissimilar mating partners, essentially these
two dissimilarity-based mating schemes introduce additional effects of magnifying the
difference between individuals. (See the simple example illustrated in Section 1.1.) But
this is not the case for MSM and PSM. Therefore, if a GA is presented with the test
function g, I predict that the performance difference between dissimilar mating and
similar mating is larger than that with the test function f .

Figure 13 illustrates the EWT analysis on the test function g. Compared with Fig-
ure 12, the performance discrepancy (the ratios of EWTs) between similar mating and
dissimilar mating is enlarged, which confirms the hypothesis. These results show that
the dissimilarity-based mate selection is beneficial in this more difficult function.

3.4 Summary and Discussion

This section presents my initial exploration of transient Markov chain analysis as a
theoretical basis for the similarity and dissimilarity-based mate selection schemes. By
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computationally characterizing effects of various factors, we gain useful insights con-
cerning the importance of mating choices in GA’s search power.

Visualizing the state transition probability matrix Q is a useful technique to see
how the GA population becomes more diverse and diffuse in case of the dissimilar
mate selection schemes. I have also used the Markov model to investigate the effects
of mate selection on population diversity. The results show that dissimilar matings
generate larger population diversity than similar matings.

As mutation rate decreases, dissimilar mating preference in improving the GA’s
performance in finding the global optimum becomes more important. In addition, the
study on the interacting effects of mate selection and crossover shows that both factors
working together enhance the GA’s search power. I have also demonstrated that the
dissimilar mating schemes are beneficial in finding the optimum when test functions
are relatively difficult.

A major concern of Markov chain analysis is the scalability of the results. In
(Huang, 2002b) the insights discussed above have been applied for further investiga-
tion on several more realistic testbeds, with larger population size and string length.
The empirical results obtained also show that dissimilar mating is beneficial in im-
proving the GA’s search performance.

4 Conclusion and Future Work

In this paper, I introduce simple models to investigate mate selection in the context of
GA, where individuals are allowed to search for mates. Such approaches can model
interdependent fitnesses of population members and introduce another source of se-
lection pressure. The resulting GA hence forms a more complex system in which indi-
viduals’ fitnesses depend on both the environment and other population members.

The very essence of good GA design is retention of diversity, furthering explo-
ration, while exploiting building blocks already discovered. Through the systematic
investigation, I demonstrate that proper mating preferences are shown to indeed facil-
itate discriminating individuals in the population, retain genetic diversity, and better
utilize building blocks already discovered for exploration of the search space. The ad-
vantage of using dissimilarity-based mating preferences is reflected by the correspond-
ing GA’s improved best-so-far performance.

Although the results obtained were based on simple fitness landscapes, I have con-
ducted further experiments on more complicated test functions, including more realis-
tic building-block-based and real testbeds. These results will be described in (Huang,
2002b). In particular, several illustrations in that forthcoming paper will also show sim-
ilar results as those in this paper—i.e., mate selection indeed plays a crucial role in GAs’
search power, and selecting dissimilar mates can provide substantial improvement for
the GA’s best-so-far performance. (The results obtained in (Huang 2002b) are thus en-
couraging since it means that the framework of mate selection proposed in this paper
can be applied to practical problems.)

There are a variety of directions worth exploring. For example, in addition to
expected waiting times, the variance of the waiting times is also an important metric
that can be derived from the mate selection Markov models. Another direction is to
have a systematic investigation on the effects of population size, crossover, mutation,
and other factors, either analytically or empirically. All these issues are critical for
examining whether mate selection is an important ingredient in GAs.

The investigation so far has been centered around fixed, non-intelligent mate selec-
tion schemes. Further research will need to be extended to self-adaptive mate selection,
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including the existing tag-added, template-added mechanisms, and others.
Thus far the similarity comparison has focused on the genotypes of population

members. In future work, advanced study of mate selection based on individuals’
phenotypes will be conducted.

Since this paper focuses on fixed-length, linear chromosomes, one of the other ob-
vious extensions is to variable-length, nonlinear representations, such as those used in
Genetic Programming (Koza, 1992). It is clear that proper similarity metrics depend
on problem domains and the algorithms used. Therefore, one would need to select
suitable similarity metrics for different problem domains.
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Cantú-Paz, E. (1997). A survey of parallel genetic algorithms. IlliGAL Report No. 97003, Univer-
sity of Illinois, Urbana, Illinois.

Craighurst, R. and Martin, W. (1995). Enhancing GA performance through crossover prohibitions
based on ancestry. Procedings of the 6th International Conference on Genetic Algorithms, Morgan
Kaufmann, pp. 130–135.

Das, R. and Whitley, L. D. (1991). The only challenging problems are deceptive: Global search
by solving order 1 hyperplanes. Proceedings of the Fourth International Conference on Genetic
Algorithms, Morgan Kaufmann, pp. 166-173.

De Jong, K., Spears, W., and Gordon, D. (1994). Using Markov chains to analyze GAFOs. Founda-
tions of Genetic Algorithms 3, pp. 115-137.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation in genetic
function optimization. , Procedings of the 3rd International Conference on Genetic Algorithms,
Morgan Kaufmann, pp. 42–50.

Dobzhansky, T. (1937). Genetics and the Origin of Species. (Reprinted 1982). New York: Columbia
University Press.

Eshelman, L. J. and Schaffer, J. D. (1991). Preventing premature convergence in genetic algorithms
by preventing incest. Procedings of the 4th International Conference on Genetic Algorithms, Mor-
gan Kaufmann, pp. 115–122.

Fernandes, C., Tavares, R., Munteanu, C. and Rosa, A. (2001). Assortative mating in genetic al-
gorithms for vector quantization problems. Procedings of the 2001 ACM Symposium of Applied
Computing, pp. 361–365.

Forrest, S. and Mitchell, M. (1993). Relative building block fitness and the building block hypoth-
esis. Foundations of Genetic Algorithms 2, pp. 109-126.

Freeman, S. and Herron, J. C. (1998). Evolutionary Analysis, Prentice Hall, 1998.

Evolutionary Computation Volume x, Number x 27



C.-F. Huang

Goldberg, D. E. (1989). Genetic Algorithms in search, Optimization, and Machine Learning. Reading,
MA: Addison Wesley.

Hillis, W. D. (1992). Coevolving parasites improve simulated evolution as an optimization proce-
dure. Artificial Life II, volume X of Santa Fe Institute Studies in the Sciences of Complexity,
Addison-Wesley, pp. 313-324.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michi-
gan Press.

Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined func-
tions. Evolutionary Computation, 8(4): pp. 373-391.

Huang, C-F. (2002a). A Study of Mate Selection in Genetic Algorithms. Doctoral dissertation. Ann
Arbor, MI: University of Michigan, Electrical Engineering and Computer Science.

Huang, C.-F. (2002b). A Study of Mate Selection Schemes in Genetic Algorithms—Part II. Evolu-
tionare Computation, in preparation.

Koza, J. (1992). Genetic Programming. MIT Press.

Mahfoud, S. W. (1995). Niching Methods For Genetic Algorithms. Ph. D. thesis, IlliGAL Report No.
95001, University of Illinois, Urbana, Illinois.

Mayr, E. (1942). Systematics and the Origin of Species. (Reprinted 1982). New York: Columbia Uni-
versity Press.

Miller, R. G. (1986). Beyond ANOVA, basics of applied statistics. John Wiley & Sons.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press.

Nix, A. E. and Vose, M. D. (1992). Modelling genetic algorithms with Markov chains. Annals of
Mathematics and Artificial Intelligence #5, pp. 79-88.

Potter, M. A., De Jong, K. A., and Grefenstette, J. J. (1995). A coevolutionary approach to learning
sequential decision rules. Proceedings of the 6th International Conference on Genetic Algorithms,
pp. 366-372.

Price, P. W. (1996). Biological Evolution. Saunders College Publishing, Harcourt Brace College Pub-
lishers, New York, NY.

Rosin, C. D. and Belew, R. K. (1997). New methods for competitive coevolution. Evolutionary
Computation, 5(1): pp. 1-29.

Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary Ecology, Prentice-Hall, 1979.

Rudolph, G. (1994). Massively parallel simulated annealing and its relation to evolutionary algo-
rithms. Evolutionary Computation, 1(4): pp. 361-383.

Russel, P. J. (1998). Genetics. Benjamin/Cummings, 1998.

Spears, M. W. (1994). Simple subpopulation schemes, Procedings of the 1994 Evolutionary Program-
ming Conference, World Scientific. pp. 296–307.

Suzuki, J. (1993). A Markov chain analysis on a genetic algorithm. Proceedings of the 5th Interna-
tional Conference on Genetic Algorithms, pp. 146-153.

Todd, P. and Miller, G. (1991). On the sympatric origin of species: mercurial mating in the quick-
silver model. Proceedings of the 4th International Conference on Genetic Algorithms, Morgan
Kaufmann, pp. 547–554.

Todd, P. and Miller, G. (1997). Biodiversity through sexual selection. Artificial Life V: Proceedings of
the Fifth International Workshop on the Synthesis and Simulation of Living Systems, Cambridge,
MA: MIT Press/Bradford Books, pp. 289–299.

Vose, M. D. and Liepins, G. E. (1991). Punctuated equilibria in genetic search. Complex Systems 5,
pp. 31-44.

28 Evolutionary Computation Volume x, Number x


